National Benchmark Test results and success: a longitudinal study at the University of Fort Hare

Southern African Association for Institutional Research
2014 Forum, Pretoria

L. Mayekiso
Department of Planning and Quality Assurance
University of Fort Hare
Introduction

• Background to the study
• What are the NBTs?
• Study design
• Data analysis (selected results)
• Discussion
• Conclusions/Future studies
Background to the study

• Under-preparedness of school-leavers for university studies is a widely reported issue
• Foundation programmes support only 15% of the students entering university
• What is an nuanced approach to support
• How can we tell what each student needs and by when?
What are the NBTs?

- National Benchmark Tests Project
- The purpose of the NBTs
 - Prospective first-year student assessment

Academic Literacy (AL)

Quantitative Literacy (QL)

Cognitive Academic Mathematical Proficiency (Math)

3 hour test
What are the NBTs?

<table>
<thead>
<tr>
<th>Performance Levels</th>
<th>Academic Literacy</th>
<th>Quantitative Literacy</th>
<th>Mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum</td>
<td>Minimum</td>
<td>Maximum</td>
</tr>
<tr>
<td>Proficient</td>
<td>100</td>
<td>65</td>
<td>100</td>
</tr>
<tr>
<td>Intermediate</td>
<td>64</td>
<td>42</td>
<td>65</td>
</tr>
<tr>
<td>Basic</td>
<td>41</td>
<td>0</td>
<td>37</td>
</tr>
</tbody>
</table>

Scores reported as whole number percentage

NBT Benchmarks for Degree Study

<table>
<thead>
<tr>
<th>NBT Proficiency category</th>
<th>Score Continuum</th>
<th>Institutional recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Proficient</td>
<td></td>
<td>Performance in domain areas suggests that academic performance will not be adversely affected. If admitted, students should be placed on regular programmes of study.</td>
</tr>
<tr>
<td>Intermediate</td>
<td></td>
<td>Challenges in domain areas identified such that it is predicted that academic progress will be affected. If admitted, students’ educational needs should be met in a way deemed appropriate by the institution (e.g. extended or augmented programmes or FET colleges). Institutions registering students performing at this level should provide such support.</td>
</tr>
<tr>
<td>Basic</td>
<td></td>
<td>Serious learning challenges identified: it is predicted that students will not cope with degree level study without extensive and long-term support, perhaps provided through bridging programmes or FET colleges. Institutions registering students performing at this level would need to provide such support.</td>
</tr>
</tbody>
</table>

Source Higher Education South Africa website
Study design

Cohort selection
(stratified random sampling)

Cohort analysis

Mixed effects regression model linkage to National Benchmark Test results

\[Y = h(X\alpha + Z\beta) + \epsilon \]
Cohort Selection

Sampling design

Study population (1016 students and 5337 courses)

Sampling unit (student)

Sampling frame (student register of NBT writers)

Sampling method (proportional stratified random sample)

Stratum (campus by faculty)

Analysis unit (registration record)
Cohort Properties

Student sample by Faculty
- Management and Commerce: 213
- Law: 71
- Education: 159
- Science and Agriculture: 231
- Social Sciences and Humanities: 238

Student sample by Campus
- Alice: 541
- Bisho: 1
- East London: 370

Cohort Courses by Faculty
- Management and Commerce: 1195
- Law: 379
- Education: 689
- Science and Agriculture: 1140
- Social Sciences and Humanities: 1281

Cohort Courses by Campus
- Alice: 2790
- Bisho: 4
- East London: 1890
Cohort analysis

2012-2013 Yearly progression rate of 65.90%

Cohort pass rate

<table>
<thead>
<tr>
<th>Semester</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st sem</td>
<td>79.31</td>
</tr>
<tr>
<td>2nd sem</td>
<td>81.96</td>
</tr>
<tr>
<td>3rd sem</td>
<td>83.31</td>
</tr>
<tr>
<td>4th sem</td>
<td>85.92</td>
</tr>
</tbody>
</table>

Cohort retention rate

<table>
<thead>
<tr>
<th>Semester</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st sem</td>
<td>100</td>
</tr>
<tr>
<td>2nd sem</td>
<td>99.34</td>
</tr>
<tr>
<td>3rd sem</td>
<td>99.87</td>
</tr>
<tr>
<td>4th sem</td>
<td>99.67</td>
</tr>
</tbody>
</table>

Cohort status in first semester 2013

- First year: 156
- Not registered: 149
- Second year: 601

Cohort status in second semester 2013

- First year: 156
- Not registered: 150
- Second year: 600
Model Fitting

- \[E[y_{ij}|u_i] = h(X_{ij}\beta + Z_{ij}u_i), \quad j=1,\ldots, n_i \text{ and } i = 1, \ldots, m. \]

- \(y_{ij} \) ith unit response at time j
- \(\beta \) (p×1) vector of unknown fixed effect parameters
- \(X_{ij} \) (p × 1) design vector for fixed effects
- \(Z_{ij} \) (q × 1) design vector for random effects
- \(h(.) \) known differentiable link function
- \(u_i \) (q×1) vector of ith subject unobservable random effects
- \(u_i \overset{i.i.d}{\sim} \mathcal{N}_i(\mathbf{0}, \mathbf{G}) \)
- \(\mathbf{G} \) random effect variance covariance matrix
- \(\mathcal{N}_i \) known distribution

Breslow and Clayton (1993) and McCulloch and Searle (2001)
Model Fitting

- \(Y_i = X_i \beta + Z_i u_i + e_i \), \(i = 1, \ldots, m \).

- \(Y_i \) (\(n_i \times 1 \)) vector of ith unit response variables (final course marks)
- \(\beta \) (\(p \times 1 \)) vector of fixed effect parameters
- \(X_i \) (\(n_i \times p \)) design matrix for fixed effects (NBT scores)
- \(Z_i \) (\(n_i \times q \)) design matrix for random effects
- \(u_i \) (\(q \times 1 \)) vector of random effects
- \(e_i \) (\(n_i \times 1 \)) vector of random (within-unit) errors
- \(u_i \sim \mathcal{N}(0, D) \) and \(e_i \sim \mathcal{N}(0, R_i) \)
- \(\mathcal{N}_i \) is the normal distribution
- \(h(.) \) is the identity function
- \(D = I \sigma_u^2 \)
- \(R_i = I \sigma_e^2 \)
- \(u_i \) and \(e_i \) are independent
Faculty of Social Sciences and Humanities

• $y_{ij} = \beta_0 + (\text{NBT AL Score}) \beta_1 + u_{0i} + e_{ij}, \quad i = 1, \ldots, m, j = 1, \ldots, n_i.$

• $y_{ij} = \beta_0 + (\text{NBT QL Score}) \beta_1 + u_{0i} + e_{ij}, \quad i = 1, \ldots, m, j = 1, \ldots, n_i.$

• Significant for all four semesters

• Scaled intercept $= \frac{\beta_0}{100}$
Faculty of Social Sciences and Humanities

![Graph showing data for NBT AL and NBT QL models.]

- **NBT AL model**
 - Scaled Intercept: 0.53, 0.45, 0.48, 0.49
 - NBT AL: 0.22, 0.33, 0.31

- **NBT QL model**
 - Scaled Intercept: 0.54, 0.48, 0.49, 0.47
 - NBT QL: 0.23, 0.42, 0.34, 0.45

Legend:
- 1st sem
- 2nd sem
- 3rd sem
- 4th sem
Faculty of Management and Commerce

Single predictor models

- \(y_{ij} = \beta_0 + (\text{NBT AL Score}) \beta_1 + u_{0i} + e_{ij}, \ i = 1, \ldots, m, j = 1, \ldots, n_i. \)
- \(y_{ij} = \beta_0 + (\text{NBT QL Score}) \beta_1 + u_{0i} + e_{ij}, \ i = 1, \ldots, m, j = 1, \ldots, n_i. \)
- \(y_{ij} = \beta_0 + (\text{NBT Math Score}) \beta_1 + u_{0i} + e_{ij}, \ i = 1, \ldots, m, j = 1, \ldots, n_i. \)
- All models significant for first three semesters
- First model also significant for fourth semester
Faculty of Management and Commerce

Two predictor models

• $y_{ij} = \beta_0 + (\text{NBT AL Score}) \beta_1 + (\text{NBT QL Score}) \beta_2 + u_{0i} + e_{ij}, i = 1,.., m, j = 1,.., n_i.$

• $y_{ij} = \beta_0 + (\text{NBT AL Score}) \beta_1 + (\text{NBT Math Score}) \beta_2 + u_{0i} + e_{ij}, i = 1,.., m, j = 1,.., n_i.$

• $y_{ij} = \beta_0 + (\text{NBT QL Score}) \beta_1 + (\text{NBT Math Score}) \beta_2 + u_{0i} + e_{ij}, i = 1,.., m, j = 1,.., n_i.$

• Models significant only for first two semesters
Faculty of Management and Commerce

NBT AL model

NBT AL and NBT QL model

NBT QL model

NBT AL and NBT Math model

NBT QL and NBT Math model

NBT Math model

<table>
<thead>
<tr>
<th>Value</th>
<th>1st sem</th>
<th>2nd sem</th>
<th>3rd sem</th>
<th>4th sem</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.43</td>
<td>0.46</td>
<td>0.56</td>
<td>0.56</td>
<td>0.13</td>
</tr>
<tr>
<td>0.46</td>
<td>0.44</td>
<td>0.21</td>
<td>0.21</td>
<td>0.14</td>
</tr>
<tr>
<td>0.48</td>
<td>0.44</td>
<td>0.56</td>
<td>0.40</td>
<td>0.19</td>
</tr>
<tr>
<td>0.43</td>
<td>0.45</td>
<td>0.24</td>
<td>0.21</td>
<td>0.13</td>
</tr>
<tr>
<td>0.46</td>
<td>0.45</td>
<td>0.54</td>
<td>0.46</td>
<td>0.23</td>
</tr>
</tbody>
</table>

2014/09/26
Discussion

• Differing faculty NBT - final marks relationship patterns over four semesters
• Faculty of Management and Commerce only faculty showing reduced effect after third semester
• Faculty of Science and Agriculture shows an increasing strength pattern with semester progression
• Faculty of Law, and Faculty of Social Sciences and Humanities show stable relationship patterns to NBT over all four semesters
• Progressing student cohort has higher pass rate and lower attrition rate
•
Conclusions / Future studies

• More detailed cohort analysis will allow for deeper exploration of NBT and student success relationship
• Study will be repeated with greater variety of success indicators and modelling
• Study will be complemented with 2013 cohort study
References

Contact Details

University of Fort Hare (Planning and Quality Assurance Department)

Imayekiso@ufh.ac.za